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SI Materials and Methods
Collection of Phenotypes. We collected gene-phenotype associa-
tions from the literature for five species (worm, yeast, mouse,
human, Arabidopsis).
Forhumanphenotypes, weused employedhumandiseases from

the Online Mendelian Inheritance in Man (OMIM) database (1),
using the compressed OMIM disease categories previously de-
scribed in McGary et al. (2), such that multiple variants of a dis-
ease were grouped together. (For example “Corneal dystrophy,
hereditary polymorphous posterior” and “Corneal dystrophy,
lattice type I,” reduce to a single category of corneal dystrophies).
Mouse gene-phenotype associations were downloaded from

MouseGenome Informatics (MGI) (3) (MGI_PhenoGenoMP.rpt;
downloaded on April 21, 2008). Gene-phenotype associations in-
volvingmore than one locus or that could not be linked to anEntrez
Gene were removed. MGI identifiers were converted to Entrez
GeneIDs usingMGI_Coordinate.rpt (downloaded April 25, 2008).
MGI mouse phenotype descriptions were from VOC_Mamma-
lianPhenotype.rpt, downloaded May 7, 2008. All MGI data were
downloaded from ftp://ftp.informatics.jax.org/pub/reports/index.
html. MGI associations were supplemented with a small number of
broadly defined mouse phenotypes, http://hugheslab.med.utor
onto.ca/supplementary-data/mouseFunc_I/MGI_phenotype.txt,
but which are ultimately derived from MGI data.
Worm gene-phenotype associations were assembled from the lit-

erature-reported RNAi studies assembled in Lee et al. (4) supple-
mented by the additional phenotype data from WormBase 188 (5)
(ftp://ftp.wormbase.org/pub/wormbase/acedb/WS188/). Worm gene-
phenotype association data come from phenotype_association.
WS188.wb, phenotype descriptions from phenotype_ontology.
WS188.obo, andgene information fromgeneIDs.WS188.gz, accessed
March 26, 2008. Wormbase phenotypes were filtered for positive
associations only. All allelic variants and RNAi data were reduced to
gene-phenotype pairs. Gene IDs (e.g., WBGene00044645) were
translated to sequence names (e.g., Y51H7BR.8) using geneIDs.
WS188.gz. Of ≈22K gene-phenotype pairs, 384 could not be linked
to a sequence name. These derived primarily from uncloned genes
and were thus omitted from further analysis.
Yeast gene-phenotype associations were obtained fromMcGary

et al. (2) [a literature compilation plus Saccharomyces Genome
Database (SGD) (6)], supplemented with associations from a re-
cent set of genome-wide screens of drug sensitivity (7) (homo-
zygous and heterozygous screens, het.z_tdist_pval_nm.goodbatch.
pub, hom.z_tdist_pval_nm.pub, downloaded from http://chemogen
omics.stanford.edu/supplements/global/download/data/). All gene-
phenotype associations from the drug screens were filtered using
the authors’ recommended cutoff of P < 1 × 10−5.
Arabidopsis gene-phenotype associations were downloaded

from the Arabidopsis Information Resource (TAIR) (8) (ftp://
ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ATH_
GO_GOSLIM.txt) on December 9, 2008. Most gene ontology
(GO) terms are not phenotypes, so only GO biological processes
were retained. A mapping between symbol and locus was ob-
tained from TAIR (ftp://ftp.arabidopsis.org/home/tair/Genes/
gene_aliases.20080716) on the same date. Other symbol-locus
mappings and a set of descriptions for the genes were extracted
from the proteome file (see below). This mapping was used to
convert from symbols to loci in the gene-phenotype association
list. The gene-description mapping was enhanced by inclusion of
alternate gene symbols and names. Phenotype pairs whose sets
of associated genes overlapped by greater than 90% were com-

bined, provided that the phenotypes each had more than one
associated gene.
For the purposes of calculating phenologs from mouse, worm,

yeast, and humans, we considered only a subset of the gene-
phenotype associations plotted in Fig. 1A, analyzing only those
implicating single genes (i.e., not genetic interactions or traits
requiring simultaneous mutation of multiple loci), and only those
phenotypes in which a defect was observed (i.e., omitting genes
associated with the phenotype “normal,” “wild-type,” “no effect,”
or other such cases.) All gene-phenotype sets are available from
the supporting web site (http://www.phenologs.org).

Identification of Nonredundant Phenotype Sets. To minimize the
number of redundant comparisons performed, all phenotype-
associated gene sets within a single organism were tested for sig-
nificant overlap and nonredundant sets were selected for sub-
sequent analyses. Within each organism, phenotypes were iden-
tified that reciprocally covered ≥ 80% of each other’s genes; for
each such pair of phenotypes, only the phenotype with the greater
number of genes was retained. (For example, in mouse, genes
associated with defects in the small petrosal ganglion and small
nodose ganglion overlap considerably. The former has nine asso-
ciated genes, of which a subset of eight is also associated with the
latter phenotype; only the former was retained.)

Orthologs. Proteomes. Orthologs between species were calculated
using the following translated genomes:

Human, ftp://ftp.ncbi.nih.gov/genomes/H_sapiens/protein/pro
tein.fa.gz, downloaded Feb. 7, 2008.
Mouse, ftp://ftp.ncbi.nih.gov/genomes/M_musculus/protein/pr
otein.fa.gz, downloaded Oct. 13, 2007.
Worm, ftp://ftp.wormbase.org/pub/wormbase/data_freezes/WS
170/sequences/wormpep170.tar.gz, downloaded Feb. 19, 2007.
Yeast, ftp://genome-ftp.stanford.edu/pub/yeast/sequence/geno
mic_sequence/orf_protein/orf_trans.fasta.gz, downloaded Feb.
19, 2007.
Arabidopsis, ftp://ftp.arabidopsis.org/home/tair/Sequences/blast_
datasets/TAIR8_blastsets/TAIR8_pep_20080412, downloaded
Dec. 10, 2008.

For human and mouse proteomes, we analyzed only sequences
with protein refseq identifiers (NP_ only). For humans, 43 genes
without Gene IDs were removed (mostly hypothetical proteins).
For mouse, three proteins without current records were removed.
INPARANOID calculation. To identify orthologous genes in different
species, orthologswere calculatedusing INPARANOIDv. 1.35 (9)
and blastall 2.2.15, both with default parameters. All genes as-
signed as orthologs (strictly speaking, ortholog groups or or-
thogroups because of inclusion of in-paralogs) by INPARANOID
were kept regardless of their INPARANOID score. Using or-
thogroups, rather than bidirectional best hits, captures the many-
to-many relationships that exist for gene duplicates that exist in
more than one copy in one or both species. To prevent isoform
variations from resulting in skewed blast results, mouse and hu-
man sequences with the same Entrez GeneID but separate Re-
fSeqIDs were treated separately in INPARANOID. Following
INPARANOID analysis, orthologs sharing GeneIDs were com-
bined so that gene variants would be considered together in sub-
sequent analyses.
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Calculation of Phenologs. For each pair of species, we first con-
verted gene-phenotype associations to ortholog-phenotype asso-
ciations using theorthologs calculated by INPARANOID. In cases
where paralogous genes within an organism result in the same
phenotype, multiple gene-phenotype associations thus collapse to
a single ortholog-phenotype association, which eliminates artifi-
cial inflation of the significance of ortholog overlap. Second, we
compared the set of orthologs associatedwith a given phenotype in
one species (species 1) to the set of orthologs associated with a
given phenotype in the second species (species 2), repeating this
analysis for all pair-wise comparisons of phenotypes from species 1
and species 2. For each pair of phenotypes in which the ortholog
sets overlapped (shared members), we calculated the probability
of the overlap because of chance using the cumulative hyper-
geometric distribution, where N is the total number of orthologs
shared between the two species; n and m are the number of or-
thologs linked to the species 1 and species 2 phenotypes, re-
spectively; and c is the number of common orthologs (that is,
those linked to both phenotypes). The probability is given by:

∑
minðm;nÞ
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��
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n− κ

�
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The hypergeometric probability does not correct for multiple
comparisons, so we estimated the false-discovery rate (FDR) with
an empirical permutation test. We performed 1,000 random
permutations of the ortholog-phenotype associations, for each
permutation repeating the all versus all phenotype comparison
using ortholog set sizes identical to those associated with the
actual phenotypes (i.e., shuffling ortholog identities on a per
phenotype basis, thus maintaining the phenotype set size dis-
tribution). Significant phenologs were identified at a FDR of
0.05 by ranking real and permuted phenologs on the basis of the
associated hypergeometric probabilities and selecting a threshold
of probability where the proportion of permuted phenologs above
the cutoff accounted for 5% of the phenologs.

Cross-Validated Prediction of Disease Genes. For the set of human
genetic diseases, we predicted specific genes associated with each
disease using 10-fold cross-validation, evaluating performance by
standard receiver-operater characteristic (ROC) analysis (Fig.
S2). These tests employed an alternate formalism from that de-
scribed above to discover significant phenologs, and were per-
formed as follows:
A binary gene-disease association matrix was generated for

each species, where the columns represent phenotypes. The rows
in the human (or prediction) matrix each represent a single
human gene; a true value in cell (i, j) indicates an association has
been observed between gene i and disease j. Genes that have no
identifiable orthologs in any species are excluded. False values in
cells indicate that no association has been observed.
The rows in other species’ matrices (the source matrices) are

also described in terms of human genes: if the human gene has no
ortholog in that species, the row is absent; but if the human gene
has one or more orthologs in that species, a single row represents
the whole set of orthologs. The presence of a true value in cell (i, j)
indicates that a species-specific ortholog of human gene i is ob-
served as associated with species-specific phenotype j. False val-
ues indicate no observed association.
Phenologs correspond to mappings between a prediction ma-

trixcolumnandthemost similar sourcematrix columns.Tocompute
intercolumn distances, a submatrix of the prediction matrix is
generated, its rows limited to those shared by the source matrix.
Treating each phenotype or disease as a column vector, a distance is
computed between each of the phenotypes in the sourcematrix and
each of the diseases in the prediction matrix.

As for the calculation of phenologs described above, we defined
our distance function as the hypergeometric probability of
observing c or more common genes between source phenotype u
and prediction disease v, with n total observations in one and m
total observations in the other. The cardinality of the vectors u
and v is N, the total number of human genes with orthologs in
the source species. Thus, the probability is calculated as in the
equation given above.
For each prediction disease v, we selected the source pheno-

type with the smallest distance as the top hit (best performing
phenolog), then predicted genes’ associations with the human
disease according to their associations (true or false) with the
source phenotype.
Predictive accuracy was evaluated by 10-fold cross-validation,

omitting 10% of the prediction matrix rows for each of ten
successive tests, and only evaluating predictions on the with-held
10% test set of genes, repeating for 10 unique test sets, and meas-
uring true and false-positive prediction rates using ROC analysis.
We observed that those phenologs ranked just below the best

(smallest distance) hit often provided additional valuable infor-
mation about a disease. One simple method for integrating pre-
dictions across phenologs is to combine information from the k
nearest neighbors (the top hit would be k = 1). In some cases,
distance to the kth neighbor is equal to that of additional neigh-
bors, representing a tie; in which case we included all neighbors
tied with item k.
A simple weighting scheme was used to integrate evidence from

the k (and tied with kth) nearest neighbors, calculating a score for
each human gene (row) as:

pðgene∈ disease j k disease phenologsÞ ¼
1-∏k

i¼1ð1− pðgene∈ disease j phenolog i is correctÞ
x pðphenolog i is correctÞÞ

We define the probability that the phenolog is correct (the final
term) as one minus the hypergeometric probability given pre-
viously. For the probability of the gene being associated with the
disease given that the phenolog i is correct, we use the following
empirical score: for a true source observation, as the ratio of the
phenolog intersection (the size of set u∩v, defined above) to the
size of set u; for a false source observation, as zero. Thus, al-
though observations are binary (true or false), predictions are
represented by scores (between 0 and 1), which are essentially
weighted averages of the predictions of the k nearest ortholo-
gous phenotypes.
Null distributions were calculated by repeating the cross-

validated analysis with 10 randomizations of the prediction
matrix. Randomization was accomplished by shuffling the true
values in each prediction matrix column, to ensure that the
phenotype gene set size distribution was maintained.

Tests of Subnetwork Modularity. We measured the degree of
network interconnectivity among orthologs involved in phenologs
from yeast and worms using a modification to a recently devel-
oped measure of the network clustering of a set of genes (2, 4).
Given a query set of genes, their interconnectivity in a functional
gene network [a gene network with edge weights corresponding
to the log likelihood of the linked genes functioning in the same
biological process (4, 10)] is calculated as the area under a ROC
curve (AUC) for predicting back members of the query gene set
when rank-ordering all genes in the network by each gene’s sum
of edge weights to the query gene set (corresponding to the naïve
Bayes probability of participating in the same process as genes in
the query set), performing the test using cross-validation (each
query gene is omitted in turn from the query set for purposes of
its evaluation). AUC ranges from 0 to 1. A high AUC (near 1)
indicates that query genes are more tightly connected in the
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network to each other than to other genes; an intermediate AUC
(near 0.5) corresponds to no better than random recovery of
query genes, indicating negligible interconnectivity of the query
gene set in the network. (AUC values in the range of 0 to near
0.5 indicate worse than random expectation, e.g., systematically
lower connectivity of the query set.)
To analyze phenolog gene sets, we modified the method by

converting the gene-centric functional yeast network (10) into a
network of orthologs based upon INPARANOID ortholog as-
signments. We retained only yeast gene-gene network edges
connecting orthologs present in both yeast and worm. In the case
that multiple genes are assigned to a single ortholog, multiple
network edges could exist between a pair of orthologs; we re-
tained only the edge with the greatest weight (confidence). The
resulting yeast network contains ortholog-ortholog functional
associations, rather than gene-gene associations. Using this
network, we calculated AUC as in (2, 4): for a given ortholog
query set (e.g., the set of orthologs in the intersection of a phe-
nolog), we rank ordered all orthologs shared between yeast and
worm by the sum of the edges connecting them to the query set,
then calculated AUC for recovery of the query ortholog set using
cross-validation.
We calculated network AUC for genes (orthologs) within and

outside of phenolog intersections (Fig. S8), considering all sig-
nificant (5% FDR) yeast-worm phenologs with at least four
genes in both the phenolog intersection ortholog set and the
ortholog set outside the intersection. To correct for possible
query gene size effects, we subsampled the larger of the two sets.
For example, if the intersection of a worm phenotype and a yeast
phenotype has 30 orthologs and the yeast phenotype has 15
additional orthologs, we calculated the AUC of the 15 additional
orthologs, then randomly sampled 15 genes at a time from the
intersection set, calculating the AUC of each subset of 15 genes,
taking the median value of 100 such samplings as the AUC for
the intersection set.

Tests of Deep Paralogy. In principle, deep paralogs or gene families
could be responsible for significant phenologs, rather than modules
of nonsequence related genes. We reasoned that the deep paralog
hypothesis predicts that theoverlapping intersection oforthogroups
involved in a phenolog should have more significant pair-wise
BLAST E-values than the nonintersecting genes that are involved
in the same phenotype.
To test this hypothesis, we compared genes in each phenolog set

[either intersection (I) or unique (D1or2)] (Fig. S9) in pair-wise
fashion using default BLASTP settings to all other genes in the
set. The most significant BLAST E-values were collected for each
orthogroup pair in each set. (BLAST E-values between genes
within the same orthogroup were omitted, as genes from the same
orthogroup do not contribute separately to calculating the phe-
nolog. When multiple genes from the same orthogroup belong to
a set, only the single most significant BLAST E-value to a gene
outside the orthogroup was included for that orthogroup.)
For the significant (5% FDR) phenologs of each species pair,

we separately collected the BLAST values for the orthogroups
in either the intersecting sets or the unique sets, comparing the
E-value distributions on a species-by-species basis (Fig. S9). BLAST
E-values less significant than 1e-3 were truncated at 1e-3; BLAST
E-values more significant than 5e-313 were truncated at 5e-313.

Xenopus laevis Embryo Manipulations. Female Xenopus laevis were
ovulated overnight after injecting human chorionic gonadotrophin,
and eggs were squeezed out for fertilization in vitro. At the two-cell
stage, the jelly layer of embryos was removed by swirling in 3%
cysteine (pH 7.9) in 1/3×MMRmedium and washed in 1/3×MMR
five times. For microinjections, embryos were placed in 2% Ficoll
in 1/3× MMR, and injected using forceps and an Oxford universal

micromanipulator, then reared in 2% Ficoll in 1/3×MMR to stage
9, then washed and reared in 1/3× MMR.
Whole-mount in situ hybridization was performed using a

modified method omitting acetylation steps from the standard
method (11). For all experiments, morpholino antisense oligo-
nucleotides (MOs) were injected at 20 to 60 ng per blastomere.
The posterior cardinal vein and intersomitic veins were targeted
by injecting into the two ventral cells equatorially at the four-cell
stage. Neural crest cells were targeted by injecting into one
dorsolateral blastomere in 16-cell stage embryos.
For whole-mount in situ hybridization for erg and agtrl1, em-

bryos were fixed in MEMFA medium at stages 34 to 36. The
hemorrhage phenotype was photographed at stage 45 after an-
esthetizing with Benzocaine. For in situ screening for genes ex-
pressed in blood vessels, all probes were in vitro transcribed using
PCR-amplified cDNA fragments as templates. The T7 promoter
sequence is inserted to the 5′ of each reverse primer for the in
vitro transcription reaction. In situ hybridizations were initially
performed using an InsituPro Vsi automated hybridization station
(Intavis) and positive genes were confirmed by a manual protocol.
PCR primers for genes expressed in blood vessels are listed

below:

hmha1-F: 5′-TTTTCAAGGAAGAAGCGGGAAC-3′
hmha1-R: 5′-GCGATTTAGGTGACACTATAGCCACCAC-
ACAGACTTTCCATTGAC-3′
rab11b-F: 5′-TGGGAGCCAGAGATGACGAATAC-3′
rab11b-R: 5′-GCGATTTAGGTGACACTATAGTGCTGG-
ATTTCTGTCCATCCG-3′
tcea1/3-F: 5′-CATTGGAGCTGCTTCAGTCCAC-3′
tcea1/3-R: 5′-GCGATTTAGGTGACACTATAGGTCAGG-
TTTTTCCGCATCTCTTTC-3′
tbl1xr1-F: 5′-CCCATTCAGCATTCACTTTTGG-3′
tbl1xr1-R: 5′-GCGATTTAGGTGACACTATAGAAGCCA-
TCATAAGACCCAGTTGC-3′

Images of embryos were obtained with a Leica MZ16FA ster-
eomicroscope using ImageProPlus software.

Morpholino Oligonucleotides and cDNA Clones. sox13, erg, and agtrl1
cDNAs were obtained from Open BioSystem (sox13: IMA-
GE:6636177, erg: IMAGE:5512670, agtrl1: IMAGE:8321886).
Translation blocking antisense morpholinos for sox13 and sec23ip
were designed based on the sequences from the National Center
for Biotechnology Information database (sox13: BC068647.1
sec23ip: BC079740.1). MOs were obtained from Gene Tools. All
MO sequences are listed below:

sox13-MO: 5′-TCACCCTGTATGGTATCCATTTAAG-3′
sox13-MM: 5′-TCAGCCTCTATGCTATGCATTCAAG-3′
sec23ip-MO: 5′- CCCCGTTCGGTACCTTCCCCGCCAT-3′

Tube Formation Assays. Human umbilical vein endothelial cells
(HUVECs) were purchased from Clonetics, and were used be-
tween passages 4 and 5. HUVECs were cultured on 0.2% gelatin-
coated (Sigma) plates in endothelial growth medium-2 (EGM-2;
Clonetics) in tissue culture flasks at 37 °C in a humidified atmos-
phere of 5% CO2. Next, 105 cells were replated in six-well plates 1
day before transfection. Scrambled siRNA (Ambion, cat #4611),
siRNA (5′- UGCUGAGAAUGAGAGCGGC-3′) corresponding
to the human HOXA9 sequence (12), or human SOX13–specific
siRNA (Dharmacon Smartpool L-020038–01-0005, specific se-
quences provided below) were transfected into HUVECs using
Lipofectamine RNAiMAX (Invitrogen) according to the manu-
facturer’s instructions. Transfected HUVECs (104 cells) were
seeded into 96-well plates coated with 50 μL of ECMatrix
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(Chemicon) according to the manufacturer’s instructions. Cells
were incubated for 16 h, monitoring tube formation by micro-
scopy. Branched structures were quantified using the program
ImageJ (http://rsb.info.nih.gov/ij).

J-020038–09: 5′-CCUUUAGGGCUUAUGGCCA-3′
J-020038–10: 5′-GUAAACAUAGAUAGUGCUU-3′
J-020038–11: 5′-CAGCAGAUCCAGCAGGUUA-3′
J-020038–12: 5′-CUGCCAUGCUGUUUGAGAA-3′
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Fig. S1. Enrichment for phenologs above random expectation can be seen following all pair-wise comparisons of the mutational phenotypes from mouse,
human, yeast, or worm. Histograms are plotted as in Fig. 2B.
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Fig. S2. Ten-fold cross-validated tests show strong disease gene prediction by single phenologs for approx. one-sixth to one-fifth of tested diseases; simple
weighted combinations of phenologs (e.g., evaluating the k = 40 best phenologs) provide strong predictability for approximately one-third to one-half of the
tested diseases. Predictability is measured as the area under a receiver-operater characteristic (ROC) curve as described in SI Materials and Methods and
evaluated separately for each human genetic disease with ≥ 2 associated genes. An area under the ROC curve (AUC) of 1 indicates perfect prediction of known
disease genes in a cross-validated test; an AUC of 0.5 indicates performance no better than chance. Error bars indicate first quartile, median, and third quartile
of predictions of shuffled disease gene sets from the k = 1 test; score distributions from shuffling tests are similar for both k = 1 and k = 40 and center around
AUC = 0.5, as expected by chance. OMIM, Online Mendelian Inheritance in Man.

rab11b

tbl1xr1

hmha1

tcea1/3

Fig. S3. In situ hybridization shows vascular expression of four candidate angiogenesis genes in stage 32 Xenopus embryos.
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Fig. S4. (A–C) In situ hybridization shows sox13 expression in veins and developing heart of a stage 32 Xenopus embryo.

PCV PCV

ISV
ISV

Control sox13 -MO

Fig. S5. Morpholino (MO) knockdown of sox13 induces defects in vasculature, measured using in situ hybridization versus an independent marker of the
vasculature, the angiotensin receptor homolog agtrl1 (12 of 19 animals tested). Such defects are rare in untreated control animals (0 of 22 control animals
tested with agtrl1).
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Fig. S6. Enrichment for phenologs above random expectation can be seen following all pair-wise comparisons of Arabidopsis phenotypes with those from
mouse, human, yeast, or worm. Histograms are plotted as in Fig. 2B and Fig. S1.
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Fig. S7. Morpholino (MO) knockdownof sec23ip induces defects in neural crest cell migration, measured using in situ hybridization versus twist, an independent
marker of the neural crest cells (8 of 14 animals tested). Such defects are rare in untreated control animals (0 of 14 control animals tested with twist).
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Fig. S8. Genes involved in phenologs show enhanced interconnectivity in a gene network, shown here for yeast genes (10). All significant yeast-worm
phenologs with at least four orthologs in both the “intersection” and “nonintersection” sets (SI Materials and Methods) were tested for network connectivity,
measured as the area under a ROC plot as described in ref. 2, with values ranging from 0.5 (random network connectivity) to 1 (high network connectivity).
Genes from phenolog intersections show significantly higher network connectivity than genes associated with a phenolog, but outside of the intersection,
which in turn show significantly higher connectivity than size-matched random gene sets. Thus, phenologs capture subnetworks or network modules in-
formative about a given phenotype pair, and carry predictive value for additional genes relevant to the phenotypes. At the left of each box-and-whisker plot,
the center of the blue diamond indicates the mean AUC across phenologs, the top and bottom of the diamond indicate the 95% confidence interval, and the
accompanying solid vertical line indicates ± 2 SD. The bottom, middle, and top horizontal lines of the box-and-whisker plots represent the first quartile, the
median, and the third quartile of AUCs, respectively; whiskers indicate 1.5 times the interquartile range. Red plus signs represent individual outliers.
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Fig. S9. To rule out the possibility that phenolog intersections arise predominantly from “deep paralogs,”wemeasured the pair-wise BLAST E-values between
genes in phenolog intersections (I) and genes in the same phenotypes but not the phenolog intersections (the differential gene sets D1 or D2), comparing the E-
value distributions on a species-by-species basis for each species pair (see SI Materials and Methods for details). Distributions are plotted above; box plots
represent first quartile, median, and third quartile, whiskers 1.5 × interquartile range, and stars represent outliers >3 IQR [thus, the majority of pair-wise
sequence comparisons show no significant similarity with –log10(Eval) = 3]. In general, genes in phenolog intersections were no more likely to encode similar
protein sequences than genes in the phenologs but outside the intersections (i.e., associated with the phenotype in only one species), indicating that deep
paralogy is not a dominant factor in identifying phenologs. Across 20 such comparisons (10 species pairs, performing tests on a per species basis for each
comparison), in 14 cases gene pairs in the I sets showed less significant BLAST E-values than those in the D sets (one-tailed P < 0.0001 for each; Wilcoxon-Mann-
Whitney); in 3 cases gene pairs in the I sets showed more significant BLAST E-values than in the D sets (1 tailed P < 0.0001, P < 0.02, P < 0.03); and in 3 cases the
sets were not significantly biased in either direction.
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Table S1. Literature evidence for worm him genes involvement in human breast/ovarian cancer

Human gene
(alias) Worm gene Comment

FAM82B F33H2.6 Copy number variation and differential gene expression
in primary breast tumors (1)

HMG20A,B (Braf35) W02D9.3 DNA-binding protein in complex with protein encoded by
breast cancer susceptibility gene BRCA2 (2)

HORMAD2,1 him-3,htp-1,2 Copy number variation and differential gene expression
in basal breast cancer (3)

KIF15 (NY-BR-62) klp-10,18 Overexpression in breast cancer (4)
MRE11A mre-11 Mis-sense mutation in breast cancer tumor (5)
RAD1 mrt-2 Overexpression/phosphorylation of 911 complex (RAD1, RAD9, HUS1)

in breast cancer, as detected for complex partner Rad9 (6)
RAD21 coh-1 Genetic association study found 3 significant polymorphisms

associated with familial breast cancer (7)
SVIL viln-1 Up-regulated in brain metastases of breast cancer (8)
TSPO, BZRPL (PBR) C41G7.3 Overexpression in breast cancer and change in localization

correlates with aggressive tumor growth (9)

1. Chin SF, et al. (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215.
2. Marmorstein LY, et al. (2001) A human BRCA2 complex containing a structural DNA binding component influences cell cycle progression. Cell 104:247–257.
3. Adélaïde J, et al. (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67:11565–11575.
4. Scanlan MJ, et al. (2001) Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun 1:4.
5. Fukuda T, et al. (2001) Alterations of the double-strand break repair gene MRE11 in cancer. Cancer Res 61:23–26.
6. Chan V, et al. (2008) Localization of hRad9 in breast cancer. BMC Cancer 8:196.
7. Sehl ME, et al. (2009) Associations between single nucleotide polymorphisms in double-stranded DNA repair pathway genes and familial breast cancer. Clin Cancer Res 15:2192–2203.
8. Nishizuka I, et al. (2002) Analysis of gene expression involved in brain metastasis from breast cancer using cDNA microarray. Breast Cancer 9:26–32.
9. Hardwick M, et al. (1999) Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear

localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res 59:831–842.
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