Predicting gene-disease associations using multiple species data
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1 Introduction

Correctly predicting genes associated with hereditary diseases is a first step to understanding the molecular
mechanisms that lead to these diseases, and in the long run, to developing effective remedies for them. If
a group of genes is already known to be associated with a disease, various “guilt-by-association” methods
have shown themselves to be useful ways to find new candidate genes. In these, new candidate genes are
predicted based on how many previously known disease genes they interact with.

Different kinds of interaction between genes can be used to determine their “guilt” for a given disease. The
PRINCE method proposed by Vanunu et al. [27], RWRH method by Li & Patra [16], and the CIPHER tool
proposed by Wu et al. [29] base their predictions on interactions from protein-protein interaction networks
such as HPRD [26], and Goh et al. [5] construct a network where genes are connected if they are associated
with the same disease.

One kind of network that has proven to be particularly useful for predicting biological function is the
Bayesian functional interaction network, where a pair of genes is linked based on the integrated evidence from
a wide array of information sources [14]. These have been used to associate genes with phenotypes in model
organisms [20, 25|, and a recently published network, HumanNet, has been used to refine predictions from
genome-wide association studies [13]. Since functional gene interaction networks aggregate many different
types of information, they can achieve much greater coverage than pure protein-protein interaction networks.

In the past decades, the growth of gene-phenotype associations in model species has been explosive, which
suggests an alternative way to find candidate genes for human diseases. McGary et al.[21] used this treasure
trove of information to find sometimes surprising connections between model species phenotypes and human
diseases, by looking for pairs of human diseases and model phenotypes that share a higher than expected
number of orthologous genes. In this way a number of new, and often surprising, model systems were
found for human diseases. For instance, it seems like the human neural crest related developmental disorder
Waardenburg syndrome shows some kind of functional similarity with gravitropism (the ability to detect
what is up) in plants, and mammalian angiogenesis involves the same pathways as lovastatin sensitivity in
yeast.

Both functional gene-gene interaction networks and the phenotypic information from distant species are
valuable sources of information for predicting gene-disease interactions since they are large-scale, independent
from each other and provide different contexts for the predictions, by showing which other genes they are
functionally associated with, and which model organism phenotypes are exhibited when the gene is perturbed.



In this work, we combine the power of the functional gene-gene interaction networks with the phenotypic
information from multiple species in a walk-based framework, and use a novel machine learning formulation
called PU learning to infer the weights for different types of walks. We represent both genes and pheno-
types as nodes in a graph, and connect two genes if they are functionally linked in HumanNet (weighted
appropriately). Similarly, a gene is connected to a model organism phenotype if any of its orthologs in the
model organism is known to be associated with the phenotype. In this way, the model organism phenotypes
provide a new kind of links between genes, and we can leverage the independent information hidden in the
model organism data.

We evaluate our methods on a number of diseases downloaded from the Online Mendelian Inheritance in
Man (OMIM) project[1]. We demonstrate high recall for known diseases by cross-validation, and show that
PU learning based methods outperform a state-of-the-art method that uses a similar walk-based framework.

2 Related Work

The problem of predicting gene-gene or gene-phenotype associations based on heterogneous sources of in-
formation has attracted the attention of the machine learning community recently. In particular, there is a
whole line of work for predicting associations[16, 27, 6, 9, 29, 3, 2] based on the realization that genes and
phenotypes can be modeled as nodes of a network, and thus graph-theoretic techniques can be brought to
bear on the problem. One of the first systems that applied the idea of a random walk on the gene network
to obtain a ranking of genes for a given phenotype was by Kohler et al. [9], where they treat the known
gene-phenotype associations equally for restarting the walk. About the same time appeared CIPHER [29],
another system that used integrated gene and phenotype networks and a linear regression model based on
the idea that similar phenotypes arise from similar genes. However, the model does not effectively use the
existing gene-phenotype associations. Later, Vanunu et al. [27] proposed a system PRINCE, which builds
on CIPHER, and uses the similarities between phenotypes in order to obtain a “smoothed” restart vector.
A different graph-based approach called Maximum-expectation Gene Cover was motivated by Karni et al.
[6]: given a set of known gene-disease associations S, find a subset of a fixed size, such that the expected
number of genes in the subset that are “close” to S is maximum (for a suitably defined notion of distance).
More recently, Li and Patra [16] proposed a “heterogeneous” network model, incorporating gene-gene, gene-
phenotype, and phenotype-phenotype networks. This model is closely related to our graph-based approach,
as we will see in detail in Section 5.

It is important to emphasize here that none of the aforementioned graph-based approaches consider the
problem in full generality, i.e. considering the orthologous gene relationships between species, and gene-
phenotype networks of multiple species.

Modeling the link prediction as a supervised classification of pairs of nodes has been tried in the context of
reconstructing gene networks. The notion of PU learning — learning from positive and unlabeled examples
— was used in [3] for predicting gene-gene links, which employs a support vector machine classifier combined
with Platt scaling [18] to obtain the conditional probability of being positive, given a pair of nodes. Here,
gene expression profiles are used to obtain features.

While we were finishing the paper, we became aware of the work [23] that also uses the PU learning
technique to train a classifier over gene-phenotype pairs. They do have multiple sources of information
but the sources do not correspond to multiple species as is the case in our work. In [23], multiple sources
are integrated using a multiple kernel learning (MKL) framework and information is shared across different
diseases using a multi-task learning framework. In contrast, we integrate information from multiple species
(and that from a gene-gene network) in a walk based framework. Our features are derived from various kinds
of walks in a combined network consisting of all our information sources. In [23], their information sources
(with one exception where a diffusion kernel is used) are not represented as a network. Instead, each source
directly provides them with a vector of features. Another important difference is that we treat all diseases
and phenotypes as part of a single task.



3 Preliminaries

Two keys ingredients in our approach will be: (i) similarity measures between nodes of a network, and (ii) PU
learning approaches. In this section, we set up notation and briefly describe some ideas from the literature
that we will later use.

3.1 Similarity Measures

Suppose we are given an undirected graph with a possibly weighted (symmetric) adjacency matrix A. The
edge weight A; ; reflects the strength of the connection between node ¢ and node j. A natural question to ask
is: how similar are two given nodes in the graph? One way to do this is by counting paths of different length
that connect ¢ to j. This has a natural connection to matrix powers since (Al)m» is exactly the number of
paths of length [ that connect ¢ to 5. We would like to put together these numbers corresponding to various
values of [ into a single number summarizing the similarity between ¢ and j. For example, we could choose
any sequence J; of non-negative coefficients or weights (not to be confused with the edge weights A; ;) and
define the similarity
Sii=>_ Bi(AYi; .

1>1

The similarity matrix itself is even simpler to write thanks to matrix notation:

S = ZﬁzAl . (1)

1>1

If the sum above is only taken over finitely many values of [ then any choice for g; leads to a well-defined
similarity measure. However, if the sum is over all values of [, then we need to choose (; such that they
rapidly decay as [ grows. Otherwise, the infinite sum may not converge. Following the survey article[4], we
can think of the (scalar) function

F(z)= Z 62

1>1

and think of S as simply F'(A) where the matrix function F is defined through the series expansion in (1).
Specific choices for G; give us different similarity measures. A popular choice is §; = 8 for small enough
B3. This leads to the Katz measure [7]:
Skatz — ZﬁlAl )

1>1

The choice of weights (3; may seem like an arbitrary one. Indeed, it would be nice if the coeflicients could
be learned based upon the network at hand. This is exactly the approach we will adopt.

We will rely on supervised machine learning methods to learn the weights ;. But the supervision or
feedback we have in our data sets is one-sided: we only have positive examples of genes actually associated
with phenotypes. The majority of gene-phenotype pairs are unlabeled i.e. we do not know whether or not
there is an association. Fortunately, we have at our disposal a suite of supervised machine learning methods
that is meant to solve exactly the problem we are facing: PU learning, i.e. learning from only Positive and
Unlabeled examples.

3.2 PU Learning

The possibility of applying PU learning in the context of link prediction in (social) networks was already
hinted to in [17]:

There also has been some potentially relevant work in machine learning on classification when
the training set consists only of a relatively small set of positively labeled examples and a large
set of unlabeled examples, with no labeled negative examples. It is an open question whether
these techniques can be fruitfully applied to the link-prediction problem.



Our work (see also [23]) can also be thought of as paving the way for arriving at an affirmative answer to
the open question mentioned above.

Most PU learning approaches start by somehow identifying a set of reliable negatives among the unlabeled
points. Then these reliable negatives, along with the given positives, can be fed into a standard supervised
learning algorithm.

One of the state-of-the-art classification algorithms is the support vector machine (SVM). One way
of adapting SVMs to the PU learning framework ([19, 3, 2]) is to randomly draw a sample of unlabeled
examples and label them negative. Then we train a biased SVM to find a hyperplane of maximum margin
that separates the positives from pseudo-negatives. The SVM is biased in the sense that false negatives (in
the training data) are penalized much more heavily than the false positives. The bias makes sense because
the positive examples are known to be positive, while the negatives were arbitrary and hence false positives
are not to be penalized too heavily. For a biased SVM written in the primal form, the optimal hyperplane
is given by the normal vector @ that is solution of:

9H€11]R2 ||9H2 + C_ Zi:yizfl 57’ + C+ Ziiyi:+1 é—i (2)

subject to Vi, & > 0 and (®(z;),0) >1-¢&; ,

for some Cy > C_. Here z; € X are the training examples, y; € {£1} are their labels. The feature mapping
® : X — R? can, in general, map to a reproducing kernel Hilbert space (RKHS) but in our case, it will
simply map to R%. After solving for #, we can classify a test example 2 € X by taking the sign of the score

(@ (), ).

4 Problem Formulation

Let G denote the set of genes. Let P;,1 < i < s be disjoint sets representing phenotypes corresponding
to s species. Denote the sizes of the sets G and P; by ng and n; respectively. Let P = U;P; be set of all
phenotypes and denote its size by np. Thus, np =), n;.

Our input consists of the gene-gene interaction matrix G € R"¢*"G along with the matrices P; €
{0,1}"6*" encoding the known associations in the s species. A non-zero (g, p) entry in P; means that gene
g is known to be associated with phenotype p. In addition, a target species t is specified. This means the
species for which we want to predict new gene-phenotype associations.

The desired output is simply a ranked list of genes for each phenotype p € P; of the target species. For
any given phenotype p, the ranking method should rank the n, genes in order of their degree of association
with p. The ranking should be such that genes on top are the ones with the most (predicted) association.

We visualize the input data as describing a graph with a core consisting of the gene-gene network. This
core has the s gene-phenotype bipartite networks hanging off it (see Figure 1). In order to put together
the matrices G, P; coming from heterogeneous sources of information, we need some constants Ag and
Ai, 1 < i < s to determine their relative contributions. We can then put all the input data into a single
combined network whose adjacency matrix is given by:

AaG MNP MNPy - NPy
MNP0 0 - 0 .-
_ P 0 0 0 | _ [AG P
¢ = P, ] 3)
: 0 0 0
AP0 0 0
where P = [A\ Py ---A\sPs] is an ng X np matrix. The matrix C is symmetric, as G is symmetric. Note

that some or all of the zero matrices can be replaced with a network among the corresponding phenotypes,
if available. In our experiments, we do not use any such network among phenotypes. Researchers have
considered heterogeneous networks in similar settings ([29, 9, 6, 16]). However, none of these approaches



Figure 1: Combined network consisting of interactions among genes, and bipartite graphs between genes and
phenotypes of different species. The square nodes represent phenotypes, while the circular nodes represent
genes.

include multiple species phenotypes as we do. In fact, setting A; = 0,7 # t and \; = Ag = 1, we get the
heterogeneous network construction used in ([16]).

We can now pose the problem of predicting relevant associations in the target species t as a link prediction
problem in the combined network C, focussing our attention on the links in P, i.e, evaluating the proposed
methods only on the target phenotypes P;.

5 Methodology

Imagine using any of the popular ways to compute node-node similarity on the matrix C' above. This will
result in a ng X np matrix which we can write in block form:

Secc  Sacp
5= |:SPG SPP:| @
Most similarity measures are symmetric so we usually have Spg = S/ . Some existing approaches rely on
the simple but useful observation that the block Sgp can be used to rank the genes for any phenotype in
‘P and therefore, in particular, for phenotypes in P;. The ranked list of genes can be obtained by simply
considering the column of Sgp corresponding to a phenotype p of interest and then sorting the similarity
values in decreasing order.

Let us now examine the Katz and Random Walk based similarity approaches in some more detail focusing
on the particular form of our combined matrix C.



5.1 Katz

The general formula for the Katz similarity measure when specialized to the combined matrix written in

block form gives:
Skatz _ Sé%z Sggz
sk sh]
where .
SgE = (I —BAG) - P-[I—PT(I-pBA\cG) ' P]
Note how the Katz similarity matrix for A\gG itself appears in the expression above. Let us set S’C“;“tz =
(I — BAcG)~! to write the above as:

Skatz — ghot=p [T — PTSkw=P] ™"

Note that SE** depends only on G and is different from SEXZ the latter being the top-left block in the
Katz similarity matrix of the combined network. This takes into account all kinds of paths in the combined
network that start in G and end up in P. Thus, it consists of an infinite sum that consists of (weighted)
terms of the general form:

Gh . (PP .GQ% . (PPT)4...Glk+1. P
for k Z 0 and il,iQ, . .,i2k+1 Z 0.

5.2 Random Walk with Restarts

Another approach to incorporate heterogenous sources of information [16] is based on random walk model
with restarts (RWR). The basic idea is to use the known genes for a phenotype as seed nodes to initialize
a random walk in the combined network. At any time, the random walker either jumps to a neighboring
node in the combined network or goes back to one of the seed nodes (hence the name “random walk with
restarts”). Note that the setting in [16] corresponds to having gene-phenotype data for only one species.
On the other hand, they also consider a phenotype-phenotype network obtained by mining text data about
phenotypes. It is easy enough to extend their approach to handle multiple species. Similarly, as we have
already noted above, it is straightforward to extend our approach to handle phenotype-phenotype interaction
data, if available. Thus, for the purpose of comparison and discussion we consider both the Katz and RWR
approaches in the setting of the current paper: namely, gene-phenotype data from multiple species but no
phenotype-phenotype data.

To arrive at a mathematical description of the RWR approach, let us look at the combined network again:

M\eG NP XoPy o AP,
MPL0 0 0 o
T P
c= NP 00 0 :[]gT o]’
0 0 .0
NPT 00 0

Since we want to simulate a random walk, let us try to make this matrix (column) stochastic. This can be
done in several ways. Assuming that G has non-negative entries, perhaps the simplest way is to divide each
column by its ¢;-norm (sum of absolute values of entries) resulting in a column stochastic matrix.

Another way, more along the lines of [16] would be do normalize differently in the first ng columns than

the rest. Let
AcG. g

o[
g,:

be one of the first ng columns. We can normalize the top ng entries and the bottom np separately and
then take a weighted average of the two (with weighting given by yet another parameter A € (0, 1)):

G

on | ATeT
S [ R
BT



with the understanding that if a gene in not known to be associated to any phenotype (i.e. ||P,.]1 = 0),
then we will simply use A = 1 for that gene. The rest of the np columns can be normalized in the usual way
by their ¢;-norm.

In a nutshell, starting from the symmetric matrix C' of the combined network, we arrive at a column
normalized matrix CV that will, in general, not be symmetric. Then we consider the evolution:

vry1 = BCNvr + (1 - B)P

where P]\; is simply a probability distribution with equal mass on all genes known to be associated with a
phenotype p of interest. The genes are then ranked in the order of the mass that is assigned to them under
the steady state distribution v, of this evolution.

5.3 Relationship between Katz and Random Walks with Restarts

It is easily seen that the steady state vector v, should satisfy

Voo = BCN v + (1 — B)PY

P

which readily yields
Voo = (1= B)[I = BCN] 1P

Since PY is a column of CV and rankings do not depend on constant factors such as 3/(1 — 3), we see that
this method ranks genes by considering the top-right ng x np sized block of the matrix

BII — BCNTION = BCN + B2 (CN 2+ B3 (CN)3 + ...

which is ezactly Katz but on the normalized matrix CV instead of C itself.

5.4 A supervised approach to link prediction problem

The arbitrariness in the choices of parameters involved in the Katz and random walk based approaches
(extended to the combined network C) is unsettling. To get rid of the arbitrariness, we would like to learn
the weights based on the network itself. To this end, we conceive the problem of predicting potential gene-
phenotype associations as a supervised learning problem, where we want to learn a classifier function whose
input space consists of gene-phenotype pairs. In particular, by appropriately defining a feature space for the
gene-phenotype pairs, we will see that learning a classifier in the constructed space also achieves learning
coefficients for a truncated version of SE%=.
Recall the following two key characteristics of our data set:

1. We do not know of any “negative associations”. For each phenotype, we have only partially observed
associated genes.

2. There are a large number of unlabeled gene-phenotype pairs, with the prior knowledge that most of
them are negative.

PU learning methods are thus natural for our setting, and we learn a biased SVM classifier using the positive
and a sample of unlabeled links. Note that, though, we could in principle use any of the PU learning methods
like [15].

5.5 Features Derived from Hybrid Walks

The embedding of gene-phenotype links is specified by the function ® in equation (2). Recall that in the
Katz measure, the weights for combining the contributions from walks of different lengths is fixed beforehand.

Expanding the first few terms of the series S”é‘}ﬁz, we have

Stz = 8P + B*(G? + PPT)P + 3*(G®* + GPPT + PPTG)P + ... (5)



We observe from (5) that, for a given degree (or length) of walk, there are multiple ways of obtaining hybrid
walks, as given by the terms in the series. For a given gene-phenotype pair, different walks of the same
degree, and walks of different degrees can be used as features for the pair. Thus learning a biased SVM
provides an efficient way to learn the weights, and could help improve on the prediction performance of a
particular choice of weights (3, 3%, 33,...).

More generally, the terms in the series (5) are the matrices in the expansion of the polynomial (I + G +
PPT)kP. Clearly, the dimensionality of the feature space F is exponential in k, the degree of the matrix
polynomial, and make us vulnerable to the the curse of dimensionality because the examples are limited.
However, taking cue from the fact that the weights of increasing walk lengths need to be heavily damped, we
ignore higher order terms and thereby contain the dimensionality of the feature space d to a small constant.

Species-wise features Notice that PP T = Dy PZ-PiT. We can further decompose the features to species
level, which enables learning the contribution of each species to the prediction. Thus for a gene-gene link
(9,9'), we have a feature (P, P!, , for each species i, in addition to other G-only and hybrid features from
the expansion of the matrix polynomial. We will see later in the experiments that using species-wise features
not only lends interpretability but also improves the accuracy of the predictions, as compared to combining

features of same degree.

5.6 Algorithm

A very recent work by Mordelet et al. [24] uses bagging technique to obtain an aggregate classifier in both
transductive and inductive settings, using positive and unlabeled examples. Our problem is a typical trans-
ductive setting, i.e. the universal set of gene-phenotype pairs which must be labeled are available to the
algorithm during training phase. It is natural to do bagging in the PU learning step to reduce the variance in
the classifier that is induced due to arbitrary labeling of a random sample as negative. Let T" be the number
of bootstraps. Let ny denote the number of positive examples in the training data. Different classifiers can
be combined using a bagging algorithm as follows:

initialize f(z) =0 and n(z) = 1,V € U.
fori=1,2,...,T:

1. Draw a bootstrap sample Uy C U of size n.
2. Train a classifier f; using the positive training examples and U; as negative examples.
3. For any z € U — U, update: f(x) «— f(x) + fi(z) and n(x) « n(z) + 1.

return s(z) = f(z)/n(x), Yo € U.

We use biased SVM as the classifier in step 2 for all the iterations, and the scoring function fi(z) for
the tth iteration is simply the distance of the point = from the hyperplane and is given by the standard dot
product,

fi(x) = (6, (2))

where 6, is the normal to the hyperplane learnt using the random bootstrap in the ¢th iteration. In contrast
to the traditional SVM classifiers that classify a pair as positive or negative based on the sign of (0;, ®(z)),
we use the value as a score under the assumption that the further a point is on the positive side of the
hyperplane, the more likely it is to be a true positive.

We would also like to note that the biased SVM framework enables us to classify all gene-phenotype pairs
with a single training phase, thereby making the best use of the relation between different phenotypes, and
use the scoring function s(z) to make predictions for every phenotype during the test phase.



6 Experiments

We use a 3-fold testing methodology, i.e. we split the known associations in the target species ¢ into 3
mutually exclusive and exhaustive subsets, and evaluate different methods by training with two of the three
subsets, and testing on the hold-out set. We hold each subset once, and report the results averaged over the
3 runs. We use two types of performance measures:

1. The average AUC (area under ROC curve) per phenotype. It is the average AUC for predicting the
held-out test genes for a particular phenotype. For each phenotype, this quantity is calculated for each
of its held-out sets of known genes, and averaged over the three splits.

2. The average rank per phenotype. By this we mean the average rank (over 3 splits) a test gene for the
phenotype obtains when the gene was in a hold-out set.

Data set

The data sets for the experiments are collected from multiple sources including [11, 12, 8, 10]. Detailed
description on the extraction of the data sets can be found in [22]. In particular, when a human gene is known
to occur as multiple orthologs in a species, a single gene that is representative of the entire set of orthologs
is retained. The gene-gene interaction network is obtained from sources independent of gene-phenotype
networks (for its construction, see [13]). We have gene-phenotype associations collected from literature for
nine different species: human (Home sapiens), plant (Arabidopsis thaliana), worm (Caenorhabditis elegans),
fly (Drosophila melanogaster), mouse (Mus musculus), yeast (Saccharomyces cerevisiae), Escherichia coli,
zebrafish (Danio rerio) and chicken (Gallus gallus). The human phenotypes of interest are human diseases
from the OMIM database [1]. The sizes of the networks are shown in Table 1.

INDEX | SPECIES | ACRONYM | PHENOTYPES | # ASSOCIATIONS
1 Human Hs 1435 3571
2 Plant At 1137 12010
3 Worm Ce 744 30519
4 Fly Dm 2503 68525
5 Mouse Mm 4662 75199
6 Yeast Sc 1243 73284
7 Zebrafish Dr 1143 4500
8 E.coli Ec 324 72846
9 Chicken Gy 1188 22150

Table 1: Different species used for inferring gene-phenotype associations in the combined network model,
and sizes of the gene-phenotype networks for the species, restricted to orthologs of human genes. The total
number of genes is 12231.

Walk-based methods

The two primary walk-based methods that are evaluated are the random walk with restart (RWR) method
proposed in Li and Patra [16], and Katz on the combined graph C. The parameters that affect Katz scores
are k, 0, A\a, \i, 1 < i < 6. Here k is the maximum length of walks considered. Estimating a set of (locally)
optimal parameters is computationally expensive. We use the truncated Katz version (up to the third degree
in (5)) for the experiments, and we set k = 3. We find that the quality of the predictions get better from
k =2 to k = 3, and for higher values of k the performance improvement is negligible. Even for k£ = 3, the
number of hybrid paths between a gene and a phenotype can be really high (up to about 10°). Typically, 3 is
chosen small enough that the contribution from the higher order paths is made negligible. We set 3 = 106
which we have found to work reasonably well on networks of similar size and sparsity [28]. Also, we weigh all



the heterogeneous edges equally, i.e. A¢ =1 and A\; = 1 for all . We compare our method to two versions of
RWR method in [16]. First, the method as is from the paper, i.e. using only G and P; networks, where ¢ is
the target species. For all our experiments, we set t = Hs. Second, we extend the RWR method to multiple
species. The results are presented in Figure 2. One immediate observation is that using information from
multiple other species is helpful for prediction of associations in the target species. While extended version
of RWR does well on the average over all phenotypes, Katz on the combined network retrieves genes in
top-100 for more phenotypes than the other two methods. This is interesting and arguably more important
to the biologists, since the concern here is predicting with high precision, when the number of predictions
required are small (of order 100).

Supervised methods

In this section, we present the results of biased SVM based methods and compare them with walk-based
methods. As for the biased SVM method, we study two types of feature construction: a) Constructing
features from hybrid walks, combining phenotypes of all species together, and b) Constructing features from
phenotypes of individual species (and walks involving those phenotypes). The results are presented in Figure
3. We observe that the biased SVM variant that uses features that distinguish species perform the best by all
measures of performance. The PU learning based methods in Figure 3 perform better than the walk-based
methods like Katz and random walk with restarts.

Penalty parameters In equation (2), Cy > C_ are the penalties on misclassified positives and negatives
respectively. The weights control the relative widths of the margins on either sides of the hyperplane. As
C. increases from 0 to oo, the margin on the side of the positive examples shrinks, and as C; — oo, the
classifier makes no mistake on the positive examples. The ratio C;/C_ determines the “weight” of a positive
example, and we want this to be a very high value. In our experiments, we set C_ = 1 and C| = 10°, which
is found to be the best by cross-validation®.

7 Conclusion and Future work

We have shown that observations on phenotypes of multiple species can be exploited through orthologous
relationships to human phenotypes, to prioritize genes for human phenotypes. We have also generalized walk-
based methods to include multiple species, and proposed PU learning based solution to learn the weights for
walks of different lengths. Evaluation on OMIM human phenotypes show that the learnt weights give the
best recall rates, and outperform random-walk based methods that use fixed weights. While k-fold validation
based evaluation is good for comparisons, the real test of the proposed method is biological validation of
the recommendations. We are currently pursuing this direction. We are also planning to make the system
publicly accessible through a website, where biologists and other researchers can submit known associations
for a phenotype, and query the system for recommendations.

As we mentioned in the related works section, the recent work [23] uses the multitask approach in machine
learning where different diseases or phenotypes are treated as different learning tasks which may or may not
be coupled to each other. In contrast, we treat all the gene-phenotypes as being part of a single task. It will
be interesting to study if there is an optimal operating point between the two extremes: separate tasks for
each phenotype and a single task for all phenotypes.
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Figure 2: Evaluation of different walk-based methods, with Hs as the target species. RWRH (only Hs) is the
method in Li and Patra [16]. RWRH (all species) is the extension of the random walk with restart method
to include all species. See Section 5.2 for details. All the results are averaged over 3-fold splits.
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Figure 3: Evaluation of biased SVM methods, with Hs as the target species. RWRH (all species) is the
extension of the random walk with restart method in Li and Patra [16] to include all species (This is the best
performing walk-based method as observed from Figure 2). All the results are averaged over 3-fold splits.
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