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Most navigation solutions which make use of LIDAR for proximity operations with respect to non-co-
operative objects rely on the iterative closest point, or ICP, algorithm. For correct convergence, ICP requires
a good initial guess as to the 6 degree-of-freedom relative pose of a client object. Some solutions require
manual pose initialization; and template matching — refined by ICP — was recently demonstrated as an
automated solution for initialization. Additionally, some have used the output of one ICP iteration as the
initial guess for the next, which is inherently dangerous (since bad ICP poses are propagated forward in
time by the filter, by ICP, or by both; and because it introduces measurement errors that are correlated
with the a priori state errors). We demonstrate the use of a method borrowed from personal robotics,
OUR-CVFH (for Oriented, Unique, and Repeatable Clustered Viewpoint Feature Histograms), for rendezvous
with a tumbling object in low earth orbit as well as an asteroid in a heliocentric orbit. Our strategy
requires no initial pose estimate, and refines OUR-CVFH results with ICP; we demonstrate its utility as part of
a full navigation solution with a dual-state inertial extended Kalman filter.

& 2016 IAA Published by Elsevier Ltd. All rights reserved.
1. Introduction

Light detection and ranging (LIDAR) sensors are increasingly
being considered as the primary relative navigation sensor for
rendezvous with both satellites and natural objects, such as as-
teroids and comets. Early LIDARdevices — such as the laser alti-
meters aboard MUSES-C (Hayabusa) [1], and Hayabusa-2 [2] — were
essentially laser altimeters, and only measured range to (or alti-
tude above) a single point. In contrast, modern scanning and flash
LIDAR sensors are capable of returning the range to many points on
the surface of an object in the form of a three-dimensional (3D)
point cloud [3]. Recently, a number of flash LIDAR sensors have been
tested during rendezvous with the International Space Station
[4,5] and are planned for future operational use on missions to
asteroids [6]. Flash LIDAR sensors have become increasingly popular
because they produce all of the range measurements at the same
time and, consequently, are not subject to the same kind of motion
blur artifacts as scanning systems. Of note, however, is that the
speed of some modern scanning LIDAR sensors is such that this kind
of motion blur may be negligible for most practical rendezvous,
proximity operations, and docking (RPOD) operations. The methods
discussed in this paper apply equally well to both flash and
scanning LIDAR sensors, as well as any other sensor systems that
rights reserved.
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produce 3D point clouds.
Pose is defined as the six degree-of-freedom (6 DOF) relative

attitude and relative position between the spacecraft and an ob-
served object. In relative navigation, pose provides the mapping
from the body frame of the observed object to the spacecraft's
body frame, consisting of a rotation and a translation.

Most solutions for LIDAR-based pose determination with respect
to a non-cooperative object make use of the iterative closest point
(ICP) algorithm [7] or variants thereof. ICP attempts to compute pose
by ‘registering’ or aligning two point clouds by finding corre-
spondences between the clouds: it transforms one cloud so as to
minimize the distance between the corresponding points, and
then repeats the procedure until no further improvements are
achievable.

Early ICP implementations computed the error metric directly
from the point-to-point correspondences. The point-to-plane
strategy, however, finds point-to-point correspondences and then
computes its error metric on the basis of the distance to the tan-
gent plane of the corresponding point (e.g., [8]). Both strategies
presuppose that perfect correspondences exist between the two
point clouds, which — at least in the case of point clouds sampled
from objects via LIDAR — is asymptotically improbable.

While ICP is always guaranteed to converge, it requires a rea-
sonable initial guess in order to converge on the ‘correct’ pose. In
many cases, the output of one ICP execution is used as the guess for
the next execution (e.g., [9]), but as illustrated in Fig. 1 an erro-
neous initialization value can cause incorrect pose information to

www.sciencedirect.com/science/journal/00945765
www.elsevier.com/locate/aa
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://dx.doi.org/10.1016/j.actaastro.2016.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2016.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2016.05.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actaastro.2016.05.007&domain=pdf
mailto:john.christian@mail.wvu.edu
http://dx.doi.org/10.1016/j.actaastro.2016.05.007


t = t0 t = t1 t = t2 t = tn

Fig. 1. ICP requires a reasonable initial guess in order to converge on a correct solution, and bad pose information can be propagated forward in a rendezvous. The challenge is
illustrated using the asteroid 25143 Itokawa. In the top portion, an incorrect guess is provided, and ICP converges on a nearby local minimum rather than the absolute
minimum (the correct pose). The bottom half of the figure shows initialization with an imperfect but near-correct initial guess, from which ICP is able to produce a correct
pose, which serves as the initial guess for the next ICP call. In summary, a good initial guess is more likely to result in a successful rendezvous.
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be propagated forward in a rendezvous — possibly creating a
catastrophe. Pose initialization may also be assisted by the use of
retroreflectors on a client object (termed cooperative rendezvous)
[10,11], prior information from an attitude-only navigation filter
(such as during launch), or by algorithmic means.

However, this manuscript focuses on the problem of non-co-
operative rendezvous, such as with an asteroid or orbital debris,
where the client object pose is not known and no navigation aids
(fiducials such as reflectors) are available. A number of partial
solutions exist, but thus far no generalizable approach — applic-
able for both natural and artificial objects — has been presented.
Template matching, a 2D image recognition technique, has been
investigated for servicing ENVISAT [12], but requires a great deal of
Fig. 2. The simulation consists of a physics simulator, which includes models for a gyros
and a filter. Angular velocity measurements from the IMU's gyro are incorporated directly
arrows and fonts indicate information about the chaser vehicle; red represents the obser
the pose processor to provide initial guesses for ICP, but the primary initialization use
references to color in this figure caption, the reader is referred to the web version of th
training; provides a limited 3 DOF (attitude only) solution; and may
fail when objects are partially occluded or outside the sensor field-
of-view. Additionally, the strategy presented by Opromolla et al. is
not demonstrated in the context of a navigation filter.

In this manuscript, we discuss several improvements for non-co-
operative pose determination, applicable to both natural and un-
natural objects. First, we present a 6 DOF pose initialization strategy
based on Oriented, Unique, and Repeatable Clustered Viewpoint
Feature Histograms (OUR-CVFH) [13]; this approach has the same run-
time complexity as ICP (in many cases it runs more quickly), provides
free object recognition, and is robust to many types of occlusion.
Secondly, we demonstrate the techniques in two approach scenarios
using a dual inertial-state multiplicative extended Kalman filter (MEKF)
cope, a GPS or DSN receiver, a star tracker; a LIDAR simulator (GLIDAR), a pose processor,
into the propagation, but other measurements are ingested via the update step. Blue
ved object, as well as sensor images thereof. The filter output state may be fed into
s OUR-CVFH and requires no information from the filter. (For interpretation of the
is paper.)
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[14], and validate using Monte Carlo analyses.
2. Example system architecture

Fig. 2 shows the system architecture used in the present work. This
configuration may be easily modified to include hardware in the loop;
for example, a time-of-flight camera or Microsoft Kinect on a robot
arm may be substituted (along with a different physics simulator).

In the present work, we assume that the navigation filter has ac-
cess to measurements of the spacecraft's translational states, inertial
attitude, and relative pose. In between updates from these sensors,
the state is propagated through a dynamics model and angular ve-
locity measurements from an inertial measurement unit (IMU).

The inertial translational states are provided by a Global Posi-
tioning System (GPS) receiver in low-Earth orbit scenarios and
through a Deep Space Network (DSN) solution in deep space sce-
narios. In both cases, the measurement provided to the on-board
navigation filter are assumed to be position and velocity of the
spacecraft at a given time — sometimes referred to as position–
velocity–time (PVT) measurements. For scenarios in low-Earth or-
bit, it is assumed that the GPS receiver will process the raw GPS

pseudorange or carrier phase measurements to produce the de-
sired PVT measurements. For the deep space applications, the raw
DSN observables are assumed to be processed on the ground and
the position and velocity are then uplinked to the spacecraft.

The inertial attitude is provided by a star tracker and the re-
lative pose is provided by the OUR-CVFH/ICP solution generated from
a LIDAR image.

Measurement models for each sensor and the nature of their
implementation in a navigation filter is discussed in Section 4.4
and Appendix A.
3. Pose estimation with LIDARs using oriented, unique, and re-
peatable clustered viewpoint feature histograms (OUR-CVFH)

The OUR-CVFH algorithm is part of a family of methods based on
point feature histograms (PFH [15,16]). These methods were devel-
oped for use in personal robotics, the idea being that a robot, sent
to retrieve some object, could simultaneously

1. recognize the object amid clutter, and
1. determine its pose in order to grasp it effectively.

3.1. Point feature histogram space

In general, feature histograms attempt to describe a point cloud
— a set of points sampled from a surface — in terms of surface
features surrounding the sampled points. In the original method
(PFH, for point feature histograms), for example, the feature space
consists of concatenated histograms describing the pairwise pan,
tilt, and yaw angles, and pairwise distance, between every pair of
normals on a surface patch [15] (called a PFH descriptor hereafter).
The FPFH descriptor is similar, but neglects the pairwise distance
[16]. Each of these elements (pan, tilt, etc.), when present, is al-
lotted 45 bins — a design decision which appears to be arbitrary,
but which ultimately is dictated by its inclusion in the reference
implementation, the Point Cloud Library (PCL).2

The viewpoint feature histogram (VFH, [17]) method contributed
an additional component to the descriptor space: a 128-bin
2 The Point Cloud Library is an open-source C/Cþþ library for loading, pro-
cessing, interpreting, and displaying 3D point cloud data. More information may be
found online at http://pointclouds.org
histogram quantizing the distribution of angles between the cen-
troid–viewpoint vector and each normal vector. In the clustered
variants, the centroid is computed for each cluster instead of for
the entire object (a 128-bin histogram for CVFH [18] and a 64-bin
histogram for OUR-CVFH [13]). This so-called VFH component is roll-
invariant.

The clustered variants (CVFH and OUR-CVFH) also removed the roll-
invariance, providing the clusters with reproducible orientations
— hence, making the camera rotation observable. For OUR-CVFH, this
portion consists of thirteen 8-bin histograms, each of which de-
scribes the distribution of Euclidean points in a given cluster
through a SGURF, or semi-global unique reference frame, computed
based on the spatial distribution of the clustered points [13].

Since OUR-CVFH ideally produces a single descriptor per cluster,
the FPFH components (the roll, pitch, and yaw histograms) must be
summed across all points in the cluster. In cases where SGURF or-
ientations are ambiguous, each cluster may produce multiple
features — one for each possible orientation.

Finally, there is a fallback option for views where no clusters of
sufficient size are detectable. In training on an object, not only are
OUR-CVFH descriptors computed; but also VFH descriptors for the
entire view [18] (Aldoma et al. suggested including camera roll
histograms, which could further improve performance with some
relative client attitudes, but these were not implemented in the PCL

3D recognition pipeline, so we do not discuss them further). Thus,
for sensor images encountered without viable OUR-CVFH descriptors,
matches may be found from among the training data based on the
full image.
3.2. Definitions

A first step in the OUR-CVFH procedure is the estimation of nor-
mals and curvature, generally determined by eigenvalue decom-
position. The visible points are filtered, removing those with high
curvature.

Next, points are clustered into patches based on their pairwise
Euclidean distance and the angles between their normals; patches
which are too small or too large are discarded. We describe a patch
mathematically as a set of points { }pi (identified through a k
nearest neighbors search with respect to some query point) with
centroid pc and centroid of the normals nc, and with corre-
sponding normals represented by { }ni .

For each point pi, the pan, tilt, yaw, and distance are computed
as

α( ) = ^ ( )⊤
v ncos 1i

ϕ( ) = ^ ( )
⊤

u rcos 2ic

( )θ = ^ ^
( )

⊤ ⊤
w n u narctan , 3i i

= − ( )d p p , 4c i

with

=
( − )

d
r

p p
ic

c i

as the normalized radius from the query point to a patch point.
The basis 〈^ ^ ^ 〉u v w, , is a Darboux frame defined for a patch point

pi as

http://pointclouds.org
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Once computed, m-bin histograms (arbitrarily defined with
m¼45 per [17]) are determined for each of the pairwise angles
and inter-point distances, and these histograms are concatenated
together to form what the authors call simplified point feature
histograms (here, these are denoted as ( )pS ) for each point p.

Ideally, and in the original PFH technique, the angle (and dis-
tance) components were calculated pairwise for all points, not
with respect to the centroid pc. However, to reduce the worst-case
complexity from ( )O nk2 to O(nk) (where n is the number of surface
normals in the cloud), the full histogram for each point is ap-
proximated as

∑( ) ≈ ( ) + ( )
( )=

−

k w
p p pF S

1 1
S ,

5
c c

i

k

ic
i

0

1

where weighting wic is defined as the distance between pc and pi.
Additionally, Rusu et al. imply that the use of strategic caching of
nearest neighbors reduces the complexity to O(n). ( )pF represents
the FPFH descriptor, although the FPFH representation is not used in
the PCL implementation of the OUR-CVFH descriptor.

Further, VFH, CVFH, and OUR-CVFH include an additional angle in the
descriptor

β( ) =
∥ ∥ ( )

⊤n
p
p

cos
6

i
c

c

These angles are split into a 128-bin histogram for VFH and CVFH,
which is concatenated onto the 4�45-bin histogram already
constructed from point–centroid angles and distances. Thus, for
CVFH, the result is a 308-bin histogram for each patch — or, if no
patches are found, a single, representative 308-bin VFH for the
whole point cloud.

The final step is to remove the roll invariance by creating a 6-
DOF descriptor that captures camera roll. CVFH does this by ap-
pending a 90-bin histogram of viewpoint-normal angles to its
existing 308-bin histogram for the best n matches. OUR-CVFH takes a
different approach. Instead of appending a histogram of view-
point-normal angles, OUR-CVFH replaces the pairwise distance his-
togram (the fourth 45-bin histogram) and the first half of the 128-
bin β histogram with the SGURF histogram (permissible because all
normals are assumed to be oriented in the direction of the view-
point). Between one and four SGURFs are computed for each cluster
[13] on the basis of the distributions of points in the cluster, al-
lowing the points to be binned into one of eight octants. Each
octant is itself divided into 13 bins representing the distance from
the reference frame's center, for a total of 104 bins. This results in a
303-bin OUR-CVFH histogram (consisting of a 45-bin α histogram,
45-bin ϕ histogram, 45-bin θ histogram, 104-bin SGURF histogram,
and 64-bin β histogram). When multiple SGURFs are found, a se-
parate 303-bin histogram is used to represent each one.

3.3. Training procedure

In order to perform recognition, OUR-CVFH must be trained on
objects of interest. For this purpose, the Point Cloud Library in-
cludes a training procedure which encapsulates client objects in an
icosahedron. A camera is then placed at each vertex (or on each
face) of the icosahedron, oriented toward the center, and the ob-
ject is rendered as a point cloud. OUR-CVFH is run on the cloud,
producing at least a histogram for each view (ideally a histogram
or histograms for each cluster, depending on how many SGURFs are
found).
The PCL-provided procedure repeats four times (once for each
possible right-angle camera rotation about the boresight), which
may not be necessary given the roll disambiguation provided by
the use of SGURFs. However, this procedure ran quickly and pro-
duced extremely small amounts of data — and as the search for
matching histograms is such a small part of the OUR-CVFH method —

we elected not to modify the training procedure.
4. The dual inertial state multiplicative extended Kalman filter

Rooted in Bayesian probability, a navigation filter is responsible
for maintaining knowledge of the state (such as position) of one or
more objects, represented as (1) the expectation of the distribution
of possible states given prior evidence or prior information, and
(2) the covariance of the states. When new evidence is available, a
posterior probability may be calculated, represented in the form of
an updated estimated state and covariance.

Since the objects of interest obey some set of physical dy-
namics, the filter can propagate its prior state and covariance as
time passes; and the filter updates its knowledge using sensor
measurements as those become available. The outputs of the up-
date, then, are the posterior states and covariance. The last part of
the update, which takes place after all new measurements are
ingested, is called the reset. The reset relabels the posterior
knowledge as prior knowledge in preparation for further
propagation.

The filter design chosen here is a dual inertial state multi-
plicative extended Kalman filter. We now describe this filter ar-
chitecture in detail, beginning with a review of the specific ex-
tended Kalman filter (EKF) framework used. This review is followed
by a brief description of the “multiplicative” version of the EKF and a
discussion of why this version is necessary for the present appli-
cation. Then, finally, we describe the dual inertial state formulation
and present all of the necessary equations for implementation.

4.1. Review of the extended Kalman filter (EKF)

In the present work, the navigation filter takes the form of an
EKF, with conventions and implementation consistent with the
approaches outlined by Gelb [19] and Maybeck [20].

Suppose we have a system whose state is described by x and
whose evolution over time is governed by the following nonlinear
dynamics:

̇ = ( ) + ( )f tx x w, 7

where w is zero mean white noise. Further suppose we can obtain
some noisy measurements, ỹk, at time tk which are related to the
state by some nonlinear measurement model,

ν˜ = ( ) + ( )hy x 8k k

where ν is zero mean Gaussian noise with covariance R .
As mentioned above, typical navigation filters consist of a

propagation step and an update step. Thus, within the EKF frame-
work, we propagate the best estimate of the state, x̂ , according to

^̇ = (^ ) ( )f tx x, 9

and the corresponding state transition matrix (STM) by

Φ Φ̇ ( ) = ( ) ( ) ( )t t t t tF, , 100 0

where Φ( ) =t t I,0 0 and

( ) = ∂ ( )
∂ ( )= ^

t
f t

F
x
x
,

.
11x x
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We use the STM to advance the state covariance from one mea-
surement update time at tk to the subsequent measurement up-
date time at +tk 1,

Φ Φ= ( ) ( ) + ( )+ + +t t t tP P Q, , 12k k k k
T

k k1 1 1

where Q describes the inflation of the state covariance due to
process noise (which comes from w).

The state estimate at tk and its corresponding covariance may
then be updated according to

( )^ = ^ + ˜ − (^ ) ( )
+ −

hx x K y x 13k k k k k

( ) ( )= − − + ( )+ − ⊤ ⊤P I K H P I K H K RK 14k k k k k k k k

where Hk is the measurement sensitivity matrix and Kk is the
Kalman gain,

= ∂ ( )
∂ ( )= ^

h
H

x
x 15

k
x xk

( )= + ( )− ⊤ − ⊤ −K P H H P H R . 16k k k k k k
1

In order to accurately model a rendezvous between two objects
in orbit — one actuated and with sensors, and the other non-co-
operative and possibly tumbling — the filter must estimate the 6-
DOF state (translational and rotational) for both the spacecraft and
the observed object. In each case, the position portions of the state
vector are propagated using the velocity estimate, and velocity is
propagated via a dynamical model (here, gravitational accelera-
tion, which depends on the object's position in the inertial frame).
The attitude states require the introduction of the MEKF.

4.2. The multiplicative extended Kalman filter (MEKF)

Because we aim to estimate both translational and attitude
states, we have implemented a multiplicative EKF (MEKF) [14,21] —
where the attitude states undergo a multiplicative update and all
other states undergo the standard EKF update.

The standard convention is to keep two quantities in the filter
for each object's attitude: an attitude quaternion and, as part of
the state vector, a three-parameter attitude error (e.g., [22]). The
former is propagated, and the latter updated; the covariance de-
scribes the attitude error rather than the propagated attitude. At
the end of each update, during the reset, the prior attitude is set
equal to the quaternion product of the error and the posterior
attitude, and the attitude error starts over at zero.

Just as position requires velocity for its propagation, attitude
requires angular velocity. For the chaser spacecraft, the angular
velocity used for propagation comes directly from the gyroscope,
and a gyroscope bias term is propagated according to the dy-
namics

ν
τ

̇ = − +
( )

b b
1

,
17s

s
s s

where νs is a zero-mean Gaussian white-noise process. The ob-
served object's angular velocity — also included in the propaga-
tion — obeys torque-free rigid body dynamics

( )ω ω ω̇ = × ( )−J J , 18c
1

c c

where J is the observed object's inertia tensor. The object's angular
velocity is used to propagate its respective attitude quaternion.

We chose to implement a dual inertial state filter. That is, the
filter will estimate the full 6 DOF inertial state of both the spacecraft
and the observed object. In contrast, other filter formulations may
choose to include relative states, rather than inertial states, in the
filter.

4.3. Implementation of the dual inertial state MEKF

Putting all of the above components together, the 24�1 state
vector for the present problem is defined as

ω= ̇ ̇ ( )⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤⎡⎣ ⎤⎦x r r a b r r a . 19s s s s c c c c

where rs is the spacecraft inertial position, as is the three-para-
meter representation to the spacecraft attitude error, bs is the bias
of the spacecraft's gyro, rc is the observed object (or client object)
inertial position, ac is the three-parameter representation to the
observed object's attitude error, and ωc is the observed object's
angular velocity. The three-parameter attitude representations
used here are described in Appendix A.1.

As discussed above, we propagate the state estimate by Eq. (9),
where

( ) = ∂
∂ ( )= ^

t
f

F
x 20x x

( ) =
( )

×

×

⎡
⎣⎢

⎤
⎦⎥tF

F 0
0 F

.
21

s 12 12

12 12 c

The two components of ( )tF are

ω
=

(^ )

− ^ × −
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0 I 0 0

r 0 0 0

0 0 I

0 0 0 0 22

s
s

s

( )
ω

ω ω

=
(^ )

− ^ ×

^ × − ^ × ( )
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

G
F

0 I 0 0

r 0 0 0

0 0 I

0 0 0 J J J
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23

c

c

c

1
c c

where ω̂s is the spacecraft angular velocity and comes from the
gyro, each 0 and I is 3�3, and the position-dependent gravity
model is

μ( ) = − −
( )

⊤⎛
⎝⎜

⎞
⎠⎟G

r r
r I rr

3
.

243 2

The spacecraft gyro is assumed to follow the Farrenkopf model
[23]:

ω ω ν˜ = + + ( )b 25s s s g

where bs is the gyro bias and νg is the zero mean noise. Thus, the
best estimate of the spacecraft's body rate is simply

ω ω^ = ˜ − ^ ( )b 26s s s

It is now possible to also propagate the STM, Φ( )+t t,k k1 , ac-
cording to Eq. (10). If the time step (Δ = − )+t t tk k1 is relatively
small, the STM propagation may be approximated using only the
first few terms of a Taylor series expansion

Φ( ) ≈ + Δ + Δ + ⋯ ( )+t t t tI F F,
1
2 27k k1

2 2

unless they can be analytically determined. The only term for
which an analytic solution has been included is in sub-matrix
( )3, 4 , which is the solution to the differential equation in Eq. (17),



Fig. 3. An open-source 3D point cloud simulator called GLIDAR was used to generate simulated LIDAR images of the ISS FCB (left) and asteroid 25143 Itokawa (right). GLIDAR was
developed by the authors of this paper to quickly simulate 3D point clouds of various objects [25]. It is implemented in Cþþ and the source code is available on GitHub at
https://github.com/WVU-ASEL/glidar.
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τ
̇ (Δ ) = −Δ

( )

⎧⎨⎩
⎫⎬⎭t

t
b I exp .

28
c

c

4.4. Measurement models

The filter admits three types of sensor measurements: pose in
the sensor (LIDAR) frame, using ICP or OUR-CVFH; GPS/DSN-based posi-
tions and velocities in the inertial frame; and attitude measure-
ments in the star tracker frame.

4.4.1. GPS and DSN

The GPS (or DSN) measurements are the most straightforward,
since they are direct observations of states within the filter. This is
because we do not assume that the filter processes the raw GPS or
DSN observables, but instead simply processes the position–velo-
city–time (PVT) output of the GPS receiver or the equivalent product
produced on the ground from a DSN tracking pass. GPS is used for
Earth orbit applications and DSN is used for deep space applica-
tions. For simplicity, it is assumed that the GPS receiver or DSN an-
tenna is at the center of the spacecraft. The measurement model is
simply

= = ̇ ( )

⎡
⎣⎢

⎤
⎦⎥y y

r
r 29GPS DSN

s

s

Likewise, it is trivial to compute the corresponding measurement
sensitivity matrix,

= =
( )

⎡
⎣⎢

⎤
⎦⎥H H I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0
.

30
GPS DSN

4.4.2. LIDAR
The LIDAR provides two measurements, a relative translation and

a relative rotation, both in the sensor frame. We begin with the
relative position of the observed object with respect to the LIDAR as
expressed in the LIDAR frame, which is simply

( )= ( − ) − ( )p T T r r p 31L
S

S
I

LC/L c s

where Ts
i is the rotation matrix from the inertial frame to the

spacecraft body frame, Tl
s is the rotation from the spacecraft body

frame to the LIDAR sensor frame, and pl is the position of the LIDAR on
the spacecraft. Assuming small angles, we can incorporate the
attitude error states and write the measurement model as
= − × ^ ( − ) −
( )

⎛
⎝⎜

⎛
⎝⎜ ⎡⎣ ⎤⎦⎞

⎠⎟
⎞
⎠⎟p T I a T r r p
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Likewise, the relative attitude measurement from the LIDAR is
the attitude quaternion describing the rotation from the observed
object's body frame to the LIDAR sensor frame,

¯ = ¯ ⊗ ¯ ⊗ ¯ ( )q q q q , 33L
C

L
S

S
I

I
C

where ⊗ is the quaternion multiplication operator and the su-
perscript and the subscript convention on the attitude quaternions
are the same as used for rotation matrices. Note that q̄s

i and q̄c
i are

the two inertial attitudes from the filter and q̄l
s describes the

alignment of the LIDAR on the spacecraft. A detailed discussion of
the LIDAR attitude measurement model and the derivation of the
measurement sensitivity matrix is provided in Appendix A.2.

Finally, if the LIDAR measurement vector is given by = [ ]⊤ ⊤ ⊤y p al lc/l ,

then taking the partial derivatives of the above measurement
models yields the following measurement sensitivity matrix:

=
− ^ ^ − × ^

^ − ^ ^ ^
( )
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⎢
⎢
⎢
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4.4.3. Star tracker
The star tracker provides an attitude quaternion describing the

rotation from the inertial frame to the star tracker sensor frame, q̄t
i .

This measurement is given by

¯ = ¯ ⊗ ¯ ( )q q q 35T
I

T
S

S
I

where q̄s
i is the inertial attitude of the spacecraft (one of the states

being estimated) and q̄t
s describes the orientation of the star

tracker on the spacecraft. A detailed discussion of the star tracker
measurement model and the corresponding derivation of the
measurement sensitivity matrix is provided in Appendix A.3. The
result is the following measurement sensitivity matrix for use in
the MEKF:

= ^
( )

⎡
⎣⎢

⎤
⎦⎥H 0 0 T 0 0 0 0 0 . 36T T

S

https://github.com/WVU-ASEL/glidar


Fig. 4. The addition of noise does not noticeably affect Itokawa OUR-CVFH results as the client range varies. The top pair of state residuals show how far off OUR-CVFH (as refined
by ICP) was for a set of randomly generated LIDAR images of Itokawa. The third and fourth plots are for the same set of LIDAR images, but with additive noise (zero-mean,
negative, 10 cm).

Fig. 5. Itokawa OUR-CVFH attitude errors may be limited by establishing a maximum allowable descriptor distance. The two plots are from the 1000-run Monte Carlo with and
without noise, respectively, for 25143 Itokawa. The consequence of setting such a threshold is that our selected pose strategy produces fewer updates (see also Fig. 6).
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4.5. Pose estimation and fault detection strategy

Most existing strategies for LIDAR-based pose estimation rely
exclusively on ICP. An early goal of this work was to make use of
OUR-CVFH as an independent check on ICP, each iteration of which is
typically dependent upon the previous iteration's output. As such,
we designed the following strategy for converting LIDAR images into
pose estimates via two concurrently running, identical processes.
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Fig. 6. Setting a restriction on OUR-CVFH descriptor distance limits the number of bad attitude updates sent to the filter. These plots show the azimuth and elevation of each of
the 1000 attitude quaternions used to test OUR-CVFH. Black crosses indicate a “correct” pose, within 10 degrees of the true attitude; red triangles indicate an “incorrect” attitude.
The upper left plot shows the full distribution of attitudes used in the Monte Carlo simulation; the upper right graph provides only those with a descriptor distance less than
40. The bottom plots show additional limitations on descriptor distances — and demonstrate that if the threshold is set too low, no updates will be available for certain
asteroid attitudes. These results come from the noisy LIDAR images, but do not differ substantially from the noiseless simulations. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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The procedure for each process is as follows:

1. Receive a LIDAR image and the time it was recorded, tlidar.
2. Obtain a pose estimate by one of the following means:
(a) Run OUR-CVFH on the LIDAR image.
(b) Ask the filter to provide a propagated pose estimate for time

tlidar.
3. Refine the estimate using ICP.
4. Send the refined pose, the ICP convergence score, and tlidar to the

filter.
5. Repeat.

In all cases, a pose process obtains its first pose estimate using
OUR-CVFH. Since this strategy is generally longer running, we plan-
ned for one process to typically be running ICP while the other ran
OUR-CVFH. If, at any time, the combination of OUR-CVFH and ICP
produced a better convergence score than the ICP-only pose pro-
cess, the ICP process would reinitialize with OUR-CVFH again — and
the OUR-CVFH process would proceed into ICP-only mode. Similarly,
either process would reinitialize if its update failed the filter's
residual edit check — which meant that in some cases, OUR-CVFH
could be running simultaneously in both threads. We attempted to
stagger these processes, starting the first one several seconds be-
fore the second. If two instances requested a pose estimate from
the filter for the same tlidar at the same time, one of the two would
get a new image from the LIDAR and run OUR-CVFH rather than con-
tinuing with ICP.

We found, however, that our ICP-only strategy produced a
growing oscillation in the filter between client velocity and an-
gular velocity states, which quickly led to filter divergence. In es-
sence, using the filter as input for ICP amplified the errors by in-
ducing an artificial correlation between these states — arising



Fig. 7. For the ISS module, we found that ICP convergence score — along with descriptor distance — was effective for eliminating false positives. The displayed plots are for
noiseless LIDAR images; the noisy plots are not shown, but are again similar. The effects of OUR-CVFH descriptor distance (top) and ICP convergence score (bottom) on attitude
error are correlated.
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from the fundamental assumption that for some measurement
and state

ν˜ = ( ) + ( )hy x 37

^ = + ( )x x e, 38

respectively, the errors ν and e are uncorrelated,

ν = ( )⊤⎡⎣ ⎤⎦e 0E . 39

We settled on a strategy which used ICP only to refine OUR-CVFH
results (and continued to run them staggered in two concurrent
processes). In other words, rather than using OUR-CVFH as a check on
ICP, we use OUR-CVFH (with refinement by ICP) as the sole method for
relative pose computation. We also imposed a requirement that no
out-of-order updates be incorporated; that is, if one process fin-
ished its computation late, its results would not be admitted.

To characterize the performance of the OUR-CVFH with ICP re-
finement strategy, we tested it on 1000 attitudes (generated based
on [24]) and distances, drawing uniformly, using models of both
Itokawa and the ISS functional cargo block (FCB) module (Fig. 3).
Point clouds of these objects at each attitude were generated using
GLIDAR [25]. We repeated the analysis using the same point clouds
with additive noise, and found the results to be generally indis-
tinguishable (Fig. 4). Our analysis demonstrated that the vast
majority of erroneous pose solutions can be detected by estab-
lishing a maximum allowable OUR-CVFH descriptor distance and/or
maximum allowable ICP convergence score. The performance of
such a scheme is shown for Itokawa in Figs. 5 and 6 and for the ISS

FCB module in Figs. 7 and 8.
5. Simulation of LIDAR-based relative navigation during an as-
teroid rendezvous

In order to better evaluate the techniques outlined in previous
sections of this paper, we assessed the end-to-end navigation
system performance using a simulated rendezvous with the as-
teroid 25143 Itokawa. We focus on the nearer portion of the ap-
proach, where the LIDAR is likely to produce sufficient resolution
that 6 DOF relative navigation is possible and OUR-CVFH can de-
termine a useful pose.

The entire navigation architecture and physics simulator was
written in Cþþ using the Point Cloud Library (PCL), with a smat-
tering of BASH and Ruby scripts. We performed all Monte Carlo
analyses on a Dell Precision T7610 with dual Intel Xeon E5-2630 v2
processors, an NVidia Quadro K4000 video card, and 32 gigabytes
of RAM, running Ubuntu Linux.

Details of the simulation framework and a discussion of the
results are now provided.

5.1. Summary of simulation framework

We utilized a simple Newtownian physics model to describe
the spacecraft dynamics, considering only one gravitating body
with no perturbations from solar radiation pressure, magnetic
fields, etc. For the purposes of simplicity, we also chose to focus
this simulation along a coasting arc, along which the spacecraft
performs no translational maneuvers. The physics simulator pro-
pagated at 50 Hz, which is the assumed frequency of the space-
craft's gyroscope.

While a single DSN updates is assumed to occur at the beginning of
the rendezvous, no additional DSN measurements were provided dur-
ing the relatively short time period of the simulation. A star tracker
provided updates at 5 Hz. In place of a LIDAR sensor, we utilized GLIDAR,
an OpenGL-based 3D sensor simulator developed at West Virginia
University [25], which generated new sensor images at the same
frequency as the physics propagation. To generate a pose measure-
ment, one of the two parallel OUR-CVFH threads would take the latest
LIDAR image and compute the pose using the scheme described in
Section 4.5. As a result, pose estimates were available to the filter at a
much slower rate due to the finite run-time of OUR-CVFH and ICP — ty-
pically resulting in only a few measurements per second. We also
tested the filter separately from the pose algorithms using “pass-
through” no-latency pose updates at a rate of one every three seconds.
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Fig. 8. Convergence score alone eliminates false positives more efficiently than descriptor distances or a combination (for the ISS module). As shown in Fig. 7, both OUR-CVFH
descriptor distances and ICP convergence scores can be used to maximize precision and recall. However, we find that using convergence score alone is more efficient than the
combination. Black crosses indicate true positives, and red triangles denote false positives, with the threshold between the two set at 10 degrees. Each of these marks shows
the azimuth and elevation of a camera placement for testing OUR-CVFH in a 1000-run Monte Carlo analysis.
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We ran the rendezvous simulation 1000 times, with identical
physical constants (rate of approach, initial positions, etc.), but
with a varying initial filter state and with noisy sensor measure-
ments. Body rotation rates for Itokawa were arbitrarily chosen and
non-zero (different from the true rotation rate of Itokawa) in order
to demonstrate performance relative to a tumbling asteroid. We
assume that a 3 DOF (translation-only) filter has just handed off to
our 6 DOF filter at the beginning of each run, but without carrying
over any of the state covariances. Each approach was run for 300 s.

The simulations function under the assumptions that the star
tracker always has an unoccluded view of the stars. No forces
other than gravity of the central body (earth or sun) were utilized,
and no control is permitted.

The starting range for the Itokawa approach was 550 m, closing
at 0.4 m/s; and it always begins with a DSN position and velocity
update. LIDAR measurements were required to be within σ4 to be
admitted by the filter, and other measurements within σ3 .
5.2. Discussion of results

We provide the navigation filter results from the 1000-run
Monte Carlo simulation of an approach to Itokawa in Figs. 9 and
10. The time-history of state errors for each of the individual
Monte Carlo runs are indicated by the black lines, while the sha-
ded gray region depicts the filter's σ3 covariance.

The constant position errors and growing velocity covariance
for the spacecraft in Fig. 9 occurs because DSN is the only source of
absolute translational state information and there is only one such
measurement at the beginning of the rendezvous; there are no
additional DSN updates during the 300-s period of this simulation.

The asteroid position errors and velocity covariance (Fig. 10)
exhibit the same behavior as spacecraft, and for the same reason.
Relative to the state errors shown here, the error in the LIDAR

measurements is quite small (on the order of centimeters instead
of meters). As a result the asteroid's inertial position and velocity



Fig. 9. The 12 filter states for the spacecraft include position, velocity, attitude error, and gyroscope bias. Position r and velocity v are in the inertial frame fixed at the center
of the earth; attitude error ( )a is in the spacecraft body frame. The x-axis shows simulation time, in seconds. The black lines represent individual Monte Carlo runs; the lighter
area represents the σ3 covariance from the first run. The position and the velocity are unobservable, and assume the use of DSN for position and velocity just prior to t¼0; the
covariance for position is not shown, but resembles that of velocity.
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errors are effectively the same as those of the spacecraft.
The asteroid's attitude and body rate estimates, however, dis-

play more interesting behavior because of the nonlinear dynamics
and the higher frequency of measurements yielding insight into
these states (star tracker and LIDAR). Good convergence is seen on
the estimate of both the inertial asteroid attitude and body rate.
The growing and shrinking of the covariance for the asteroid at-
titude and body rate occur because the pose observability of the
asymmetric and tumbling asteroid changes with time. Of the 1000
Monte Carlo cases, only once was the filter not able to converge —

likely a consequence of the σ4 residual threshold established.
6. Conclusion

In this work, we demonstrated a complete, end-to-end solution
for spacecraft rendezvous using LIDAR-based pose measurements.
While others have examined the issue of pose computation using
LIDAR-generated point clouds, little or no published work has de-
monstrated these techniques within the context of a functioning
navigation filter.

Additionally, we demonstrated the insufficiency of the iterative
closest point (ICP) algorithm alone as a method for determining
pose. Even if an initial guess can be provided for ICP, and the



Fig. 10. The 12 asteroid filter states include position, velocity, attitude error, and body rate (angular velocity). Position and velocity are in the inertial frame, as in Fig. 9, and
attitude error is in the asteroid body frame. One Monte Carlo instance failed to accept any measurements at all, and can be observed in the attitude plots and two of the
angular velocity plots. The x-axis shows simulation time, in seconds. Again, the lighter region describes the σ3 covariance, but is not included for the position plots.
Additionally, the covariance differs substantially more between Monte Carlo runs for the asteroid attitude and body rate states than it does for position and velocity; we have
elected to display only the covariance for the first Monte Carlo run, but note that the regions where the uncertainty increases are the same from run to run.
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propagation of incorrect pose solutions avoided, the correlated
nature of the resulting errors may be incompatible in some cases
with the assumptions employed in modern navigation filters. We
introduced a solution that uses the Oriented, Unique, and Re-
peatable Clustered Viewpoint Feature Histograms (OUR-CVFH) algo-
rithm to circumvent these issues and reliably estimate pose with
respect to non-cooperative objects without the need of a good a
priori guess of the pose.
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Appendix A. Attitude measurements and their relation to at-
titude states

A.1. Preliminaries

Let us begin with an attitude quaternion

¯ =
( )

⎡
⎣⎢

⎤
⎦⎥

q
q

q A.1
s

where qs is the scalar part of the quaternion and q is the vector
part of the quaternion. If this is an attitude quaternion, then it is
unity norm, ∥ ¯ ∥ =q 1. We will use the convention q̄b

a to represent
an attitude quaternion that describes a rotation from frame A to
frame B. The corresponding rotation matrix is given by Tb

a, and
these can be related according to

( )= − + − × ( )×
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Additionally, the quaternion may be related to an angle vector
according to
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where θe is the axis of rotation and θ is the magnitude of rotation
about that axis. We may also write the quaternion in terms of
twice the Gibbs vector, a,

θ= =
( )θ⎜ ⎟⎛

⎝
⎞
⎠a g e2 2 tan

2
.

A.4

Thus, for small angles, we see that

( ) ( )θ
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A.5

Returning to regular attitude quaternions (not necessarily small
angles), we define quaternion multiplication using the non-Ha-
miltonian convention,

¯ ⊗ ¯ =
−

+ − × ( )

⎡
⎣⎢

⎤
⎦⎥

q p
q p

p q
q p

p q p q
,

A.6
s s

T

s s

such that the order of operations matches that of rotation matrix
multiplication,

¯ = ¯ ⊗ ¯ ⟷ = ( )q q q T T T . A.7c
a

c
b

b
a

c
a

c
b

b
a

All of this puts us in a position to make one final useful ob-
servation. Consider the quaternion triple product δ¯ ⊗ ¯ ⊗ ¯q q qb

a
a
b.

Multiplying using Eq. (A.6), using the fact that ∥ ∥ =q 1, and
applying Eq. (A.2) yields,

δ
δ

δ
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q
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A.8b
a

a
b

b
a

A.2. LIDAR

Recall that the raw LIDAR relative attitude measurement is given
by

¯ = ¯ ⊗ ¯ ⊗ ¯ ( )q q q q A.9l
c

l
s

s
i

i
c

Further, briefly recall that the spacecraft attitude error is defined
as

δ¯ = ¯ ⊗ ¯̂ ( )q q q A.10s
i

s s

i

and the observed object's (or client's) attitude error is defined as

δ¯ = ¯ ⊗ ¯̂ ( )q q q A.11c
i

c c

i

We define the LIDAR attitude error as

δ ¯ = ¯ ⊗ ¯̂ ( )q q q A.12l l
c

c

l

or, after expansion into known and estimated quantities,
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Now, substituting Eqs. (A.10) and (A.11), and recognizing that we

are not carrying the LIDAR misalignment as a state ( ¯ = ¯̂ )q ql
s

l

s
,
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Applying Eq. (A.8)
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and applying Eq. (A.8) again,
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Recognizing that both δq̄s and δq̄c are assumed to be small, the
above is approximately the same as
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and one final application of Eq. (A.8) yields
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The errors have already been assumed small, so substitute using
Eq. (A.5) for the three-parameter attitude representation
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which yields the following equation for the LIDAR attitude mea-
surement residual
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From here the elements in the measurement sensitivity matrix are
evident.
A.3. Star tracker

Recall that the raw star tracker measurement is given by

¯ = ¯ ⊗ ¯ ( )q q q . A.21t
i

t
s

s
i

We will define the star tracker attitude error as

δ ¯ = ¯ ⊗ ¯̂ ( )q q q A.22t t
i

i

t

or, after expansion into known and estimated quantities,
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Now, substituting Eq. (A.10) and recognizing that we are not

carrying the star tracker misalignment as a state ( ¯ = ¯̂ )q qt
s
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s
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which simplifies to

δ δ¯ = ¯̂ ⊗ ¯ ⊗ ¯̂ ( )q q q q . A.25t t

s

s s

t

Applying Eq. (A.8), we quickly see that
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Assuming that the errors are small and substituting in for our
three-parameter attitude error representations (see Eq. (A.5))
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which yields the following equation for the star tracker mea-
surement residual:

≈ ^ ( )a T a . A.28t t
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s

From here the elements in the measurement sensitivity matrix are
evident.
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